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Coherent and Squeezed States for Light
in Homogeneous Conducting Linear Media
by an Invariant Operator Method

Jeong-Ryeol Choi1

With the choice of Coulomb gauge, we investigated coherent state and squeezed state
of the light propagating through homogeneious conducting linear media with no charge
density using quantum results of the LR invariant operator method. We described coher-
ent and squeezed properties of electric and magnetic fields. The fields in coherent and
squeezed states are decayed exponentially with time due to the conductivity of the me-
dia. We studied probability density of the coherent wave packet and the highly squeezed
wave packets. The uncertainty relation between the two orthogonal phase amplitudes,
â1 and â2, in coherent state is same as the uncertainty relation in vacuum number state.
The envelope of the relative noise in coherent state alternately become large and small
with time and position. The uncertainty relation between canonical variables are varied
depending on the value of conductivity σ in squeezed state, but not lowered below h/2
which is quantum-mechanically acceptable minimum uncertainty.

KEY WORDS: dissipative light; LR invariant operator method; coherent state;
squeezed state.
PACS: 42.25.Kb, 42.50.-p, 03.65.Ge.

1. INTRODUCTION

Glauber proposed standard coherent state for the harmonic oscillator, which
is the archetype for most kind of coherent states (Glauber, 1968). The coherent
state can be created from the ground state by a displacement operator and can be
expanded in terms of the eigenstates of the Hamiltonian system. Coherent state is
near to the classical wave as far as quantum mechanics permits (Scully and Zubairy,
1997; Walls and Milburn, 1994), since this state represents well-defined amplitude
and phase unlike photon number state. Theoretically, this state can be established
by laser light that oscillates with sufficiently large amplitude. The coherent state
provides time-dependent behavior of electromagnetic waves that has the form of
typical harmonic oscillator (Vogel and Welsch, 1994). Although the coherent state
lacks the orthogonal property, they have been used as a set of basis to describe the
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electromagnetic fields, since the state of the fields can be represented uniquely in
terms of coherent state which forms a complete set.

The squeezed states as well as coherent states are worth in discussion of the
Heigenberg minimal uncertainty relation in quantum optics. The idea of squeezing
is important in the realization of reducing noise. The squeeze of the variance of
either q or p below the value of coherent state can be accomplished at the expense
of enhanced variance in the other quadrature so as to satisfy the requirements of
the uncertainty principle.

In ordinary simple harmonic oscillator, the Schrödinger equation in q-space
can be solved by separating canonical variable q̂ and time t . However, in case
of time-dependent harmonic oscillator such as damped harmonic oscillator, the
separation of these two variables cannot be performed straightforwardly, since they
are entangled together. For this reason, several techniques have been devised in
order to quantize time-dependent harmonic oscillator, i.e., LR(Lewis–Riesenfeld)
invariant operator method (Choi, 2003a; Choi and Gweon, 2002; Ji and Kim, 1995;
Lewis, 1967, 1968; Lewis and Riesenfeld, 1969; Yeon and Kim, 1994), unitary
transformation method (Brown, 1991; Li et al., 1994; Choi, 2003b; Zhang et al.,
2002), canonical transformation method (Pedrosa, 1987; Um et al., 1998; Yeon
et al., 1997, 2001), and propagator method (Gweon and Choi, 2003; Yeon et al.,
1993; Um et al., 2000, 2002). Note that all of these methods give the same quantum
results.

In homogenous conducting linear media, fields and current satisfy the
relations

D = εE , H = B/µ, J = σ E , (1)

where ε, µ and σ are the electric permittivity, magnetic permeability and conduc-
tivity of the media respectively. In the previous paper (Choi, 2003a), we quantized
light satisfying these conditions using LR invariant operator method and has been
shown that the quantum solution derived from this method for the dissipative light
is same as that of damped harmonic oscillator and its energy expectation values
in both classical and quantum-mechanical view point are decreased continuously
and exponentially as time goes by. In this paper, taking advantage of the quantum
results in Ref. (Choi, 2003a), we will investigate various properties of light in
coherent state and squeezed states such as expectation values and dispersions of
several physical quantities and uncertainty relations between canonical quantum
variables.

2. LR INVARIANT OPERATOR FOR THE DISSIPATIVE FIELDS

In previous papers, we obtained the quantum solution of the propagating
light in homogeneous conducting linear media (Choi, 2003a) and described the
corresponding electromagnetic fields (Choi, 2003c) in the spirit of LR invariant
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operator method. The choice of the Coulomb gauge in homogeneous linear media
that has no charge source enabled us to express the electromagnetic field in terms
of only vector potential rather than scalar potential. The variables position and
time in vector potential can be separated as

Â(x , t) = u(x)q̂(t). (2)

In one dimension, u(x) and q̂(t) satisfies the following differential eq. (Choi,
2003b; Louisell, 1973)

∂2u(x)

∂x2
+ ω2

c2
u(x) = 0, (3)

∂2q̂(t)

∂t2
+ σ

ε

∂ q̂(t)

∂t
+ ω2q̂(t) = 0, (4)

where ω is the natural frequency and c ≡ 1/
√

εµ is the velocity of the light in
media. If we consider the propagating wave under periodic boundary conditions,
u(x) is given by (Choi, 2003c)

u(x) = 1√
V

exp(±ikx), (5)

where V is the volume of the cube and k = ω/c is the wave number. Since Eq. (4) is
same as damped wave equation, the Hamiltonian satisfying Schrödinger equation
is expressed in terms of q̂ (Choi, 2003a):

H (q̂, p̂, t) = exp
(
−σ

ε
t
) p̂2

2ε
+ 1

2
exp

(σ

ε
t
)
εω2q̂2, (6)

where p̂ = −i h(∂/∂q̂).
From the following relation for LR invariant operator Î

d Î

dt
= ∂ Î

∂t
+ 1

i h
[ Î , Ĥ (q̂ , p̂, t)] = 0, (7)

we found that

Î = 1

2
h	

(
X̂2

1 + X̂2
2

)
, (8)

where 	 is given by 	 =
√

ω2 − σ 2/(4ε2) and

X̂1 =
√

ε	

h
exp

( σ

2ε
t
)

q̂ , (9)

X̂2 =
√

1

hε	

[σ

2
exp

( σ

2ε
t
)

q̂ + exp
(
− σ

2ε
t
)

p̂
]
. (10)
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To discuss the photon coherent state, let us introduce the annihilation and creation
operators (Choi, 2003a; Choi and Zhang, 2002):

â(t) = 1√
2

(X̂1 + i X̂2), (11)

â†(t) = 1√
2

(X̂1 − i X̂2). (12)

Then, Eq. (8) can be written as

Î = h	

(
â†(t)â(t) + 1

2

)
. (13)

Since [X̂1, X̂2] = i , the ladder operators satisfy the Boson commutation relation

[â, â†] = 1. (14)

We can easily check that the direct differentiation of â(t) and â†(t) with respect to
time satisfy

dâ(t)

dt
= −i	â(t), (15)

dâ†(t)

dt
= i	â†(t), (16)

whose solutions are given by

â(t) = â(0)e−i	t , (17)

â†(t) = â†(0)ei	t . (18)

We denote the eigenstates of the LR invariant operator by |n〉:
Î |n〉 = λn|n〉. (19)

Because both â|n〉 and â†|n〉 are the eigenstates of number operator N (= â†â) with
the corresponding eigenvalue (n − 1) and (n + 1), respectively, we can confirm
that the following conventional relations hold

â|n〉 = √
n|n − 1〉, (20)

â†|n〉 = √
n + 1|n + 1〉. (21)

From â|0〉 = 0, we can easily derive vacuum state of the LR invariant operator.
By acting â† to the vacuum state n times,

|n〉 = (â†)n

√
n!

|0〉, (22)
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the nth eigenstate can also be obtained, whose q-space representation is given by

〈q|n〉 = 1√
2nn!

(
ε	

πh

)1/4

Hn

[√
ε	

h
exp

( σ

2ε
t
)

q

]

× exp

{
σ

4ε
t − 1

2h
exp

(σ

ε
t
) (

ε	 + iσ

2

)
q2

}
. (23)

In the above equation, Hn is nth order Hermite polynomial. The time-dependent
full wave functions 〈q|ψn〉 that satisfying the Schrödinger equation are same as
the eigenstates of the LR invariant operator, except for a time-dependent phase
factor (Lewis and Riesenfeld, 1969; Choi, 2003a):

〈q|ψn〉 = 〈q|n〉 exp

[
−i

(
n + 1

2

)
	t

]
. (24)

If we consider Eq. (24), Eqs. (20) and (21) can be rewritten in terms of |ψn〉 as

â|ψn〉 = √
n e−i	t |ψn−1〉, (25)

â†|ψn〉 = √
n + 1 ei	t |ψn+1〉. (26)

3. COHERENT STATE OF DISSIPATIVE LIGHT

Let us denote the eigenvalue and eigenstate of annihilation operator â as α

and |α〉:
â|α〉 = α|α〉. (27)

It is well known that the coherent state can be expanded in terms of |n〉 as (Choi,
2004; Dantas et al., 1992; Louisell, 1973 )

|α〉 =
∑

n

cn(α)|n〉, (28)

where the coefficients cn(α) is the transformation function between number state
and coherent state. The transformation function is given by

cn(α) = exp

(
−1

2
|α|2

)
αn

√
n!

. (29)

The probability that the coherent state resides in nth state of harmonic oscillator
is same as |cn(α)|2:

|cn(α)|2 = 〈n〉n
α exp(−〈n〉α)

n!
, (30)

where 〈n〉α is the expectation value of photon number n with respect to |α〉. In
this paper, we will abbreviate 〈α| · · · |α〉 to 〈· · ·〉α for convenient. By inserting
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Eq. (22) into Eq. (28), we can confirm that the coherent state can also be obtained
by operating displacement operator to vacuum state:

|α〉 = D̂(α)|0〉, (31)

where the displacement operator D̂(α) is given by

D̂(α) = exp(αâ† − α∗â). (32)

The displacement operator has usual property that transforms â and â† as, respec-
tively

D̂†(α) â D̂(α) = â + α, (33)

D̂†(α) â† D̂(α) = â† + α∗. (34)

By substitution of Eqs. (23) and (29) into Eq. (28), we can easily obtain the
coherent state in q-space as

〈q|α〉 =
(

ε	

πh

)1/4

exp

{
1

h
exp

(
σ

2ε
t

)[√
2hε	αq − 1

2

(
ε	 + i

σ

2

)

× exp

(
σ

2ε
t

)
q2

]
+ σ

4ε
t − 1

2
α2 − 1

2
|α|2

}
. (35)

Performing the similar procedure in p-space, we found that

〈p|α〉 =
(

	

πhε

)1/4 1√
	 + iσ/(2ε)

exp

{
− σ

4ε
t − 1

hε[	 + iσ/(2ε)]

× exp

(
− σ

2ε
t

)[
iα

√
2hε	p + 1

2
exp

(
− σ

2ε
t

)
p2

]

+ 1

2

	 − iσ/(2ε)

	 + iσ/(2ε)
α2 − 1

2
|α|2

}
. (36)

If we set σ = 0, Eqs. (35) and (36), exactly reduces to that of ordinary simple
harmonic oscillator which is minimum wave packet in the form of Gaussian. The
formulas Eqs. (11) and (12) with Eqs. (9) and (10), can be inverted to yield

q̂ =
√

h

2ε	
exp

(
− σ

2ε
t
) [

â†(t) + â(t)
]

, (37)

p̂ = i

√
ε	h

2
exp

( σ

2ε
t
) {(

1 + i
σ

2	ε

)
â†(t) −

(
1 − i

σ

2	ε

)
â(t)

}
. (38)

The expectation value of canonical variables in coherent state can be calculated as

〈q̂〉α =
√

2h

ε	
exp

(
− σ

2ε
t
)

Re α, (39)
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〈 p̂〉α = √
2ε	h exp

( σ

2ε
t
) (

Im α − σ

2	ε
Re α

)
, (40)

where Re α and Im α mean the real and imaginary parts of α. Using Eqs. (37) and
(38) we can evaluate the variances of q̂ and p̂ as follows, respectively

(�q̂)α = [〈q̂2〉α − 〈q̂〉2
α

]1/2 =
√

h

2ε	
exp

(
− σ

2ε
t
)

, (41)

(� p̂)α = [〈 p̂2〉α − 〈 p̂〉2
α

]1/2 =
√

ε	h

2

(
1 + σ 2

4	2ε2

)
exp

( σ

2ε
t
)

. (42)

The uncertainty product in coherent state is therefore

(�q̂)α(� p̂)α = hω

2	
. (43)

Eq. (43) is exactly same as that of minimum value in number state and we can see
that the uncertainty principle hold since (�q̂)α(� p̂)α is always larger than h/2.
For larger conductivity (and small electric permittivity), the uncertainty product
in coherent state is also large. From Eqs. (39) and (40), we can represent the real
and imaginary part of α as

Re α =
√

ε	

2h
exp

( σ

2ε
t
)
〈q̂〉α , (44)

Im α = 1√
2hε	

[σ

2
exp

( σ

2ε
t
)
〈q̂〉α + exp

(
− σ

2ε
t
)
〈 p̂〉α

]
. (45)

Combining the above two equations give

α =
√

ε	

2h

(
1 + i

σ

2	ε

)
exp

( σ

2ε
t
)

〈q̂〉α + i√
2hε	

exp
(
− σ

2ε
t
)

〈 p̂〉α. (46)

The eigenvalue α is complex number while 〈q̂〉α and 〈 p̂〉α are real numbers. The
value α doesn’t make orthogonal system since it is defined with continuously
variable number in real and imaginary axes, i.e.,

|〈α|α′〉|2 = exp (−|α − α′|2). (47)

Here we see that α approximately satisfies the orthogonal property only when
the difference between α and α′ is large and degenerate of Poisson distribution is
small. However coherent state satisfies the property of completeness:∫

|α〉〈α|d2α = π. (48)

We can find the transformation function 〈q ′|α〉 by acting conjugate state 〈q ′| which
corresponds to the eigenvalue q ′ of q̂ to both side of Eq. (27) after inserting Eq. (11)
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for â as follows (Louisell, 1973)

〈q ′|α〉 =
(

ε	

πh

)1/4

exp

{
− 1

2h
exp

(
σ

ε
t

)[
ε	(q ′ − 〈q̂〉α)2

− iσ

(
q ′〈q̂〉α − 1

2
q ′2

)]
+ i

〈 p̂〉α
h

q ′ + σ

4ε
t + iδcq

}
, (49)

where δcq is an arbitrary real phase. With no loss of generality, let us choose δcq as

δcq = 4(Re α)(Im α), (50)

then, Eq. (49) become just the same as Eq. (35). We can also find the transformation
function 〈p′|α〉 by acting 〈p′| to Eq. (27) as follows

〈p′|α〉 =
(

	

πhε

)1/4 1√
	 + iσ/(2ε)

exp

{
− 1

2hε2[	2 + σ 2/(4ε2)]

× exp

(
− σ

ε
t

)[
ε	(p′ − 〈 p̂〉α)2 + iσ

(
〈 p̂〉α p′ − 1

2
p′2

)]

− i

h
〈q̂〉α p′ − σ

4ε
t + iδcp

}
, (51)

where δcp is another arbitrary real phase. If we choose

δcp = 1

2[	2 + σ 2/(4ε2)]

{
2

(
	2 − σ 2

4ε2

)
(Re α) (Im α) − 	σ

ε

[
(Re α)2

− (Im α)2
]}

, (52)

then, the expression of Eq. (51) recovers to Eq. (36). The probability densities
|〈q ′|α〉|2 and |〈p′|α〉|2 in coherent state are given by

|〈q ′|α〉|2 =
(

ε	

πh

)1/2

exp

{
1

h
exp

(
σ

2ε
t

)[
2
√

2hε	 (Re α)q ′ − ε	

× exp

(
σ

2ε
t

)
q ′2

]
+ σ

2ε
t − (Re α)2 + (Im α)2 − |α|2

}
, (53)

|〈p′|α〉|2 =
(

	

πhε

)1/2 1√
	2 + σ 2/(4ε2)

exp

{
− σ

2ε
t − 1

hε[	2 + σ 2/(4ε2)]

× exp
(
− σ

2ε
t
) [

	 exp
(
− σ

2ε
t
)

p′2 + σ

√
2h	

ε
(Re α)p′

]
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+ 	2 − σ 2/(4ε2)

	2 + σ 2/(4ε2)
[(Re α)2 − (Im α)2] + 2	σ

ε[	2 + σ 2/(4ε2)]

× (Re α)(Im α) − |α|2
}
. (54)

Figure 1 represents the graph of probability densities given in Eqs. (53) and
(54). From these figures, we can confirm that the probability densities oscillate
back and forth with time about q ′ = 0 and p′ = 0, respectively. This behavior
is very similar to the motion of classical oscillator. The amplitude of oscillation
decreases with time in q-space while increases in p-space.

Let us consider a radiation field with photon annihilation and creation oper-
ators â and â† and suppose that the state of the electromagnetic field is described
by a coherent state density operator ρ̂ that given by

ρ̂ = |α〉〈α|. (55)

From the above definition of ρ̂, it follows that the density operator is Hermitian
ρ̂† = ρ̂. If we want to take a piece of the system’s information in coherent state,
we must evaluate the expectation value of the corresponding operator f (â, â†),

〈 f (â, â†)〉α = Tr[ρ̂ f (â, â†)]. (56)

The conservation of probability density is represented by:

Tr(ρ̂) = 1. (57)

Up to the present, we managed the coherent state of single mode. But, note that
the total coherent light can be represented by production of individual modes l as

|{αl}〉 =
∏

|αl〉l . (58)

4. COHERENT PROPERTIES OF THE FIELDS

When we recall Eqs. (5) and (37), the vector potential Eq. (2) for the field
propagating in x direction is described as

Â(x , t) =
√

h

2εV
exp

(
− σ

2ε
t
) 1√

	

[
â(0)ei(kx−	t) + â†(0)e−i(kx−	t)

]
. (59)

Since the scalar potential is zero (Nayfeh and Brussel, 1985) in media that has no
charge density under the choice of Coulomb gauge, the operator representation of
electric and magnetic field can be obtained by expansion of only vector potential,
Eq. (59),

Ê(x , t) =
√

h

2εV
exp

(
− σ

2ε
t
) 1√

	

[( σ

2ε
+ i	

)
â(0)ei(kx−	t)
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Fig. 1. Probability densities |〈q ′|α〉|2 (a) and |〈p′|α〉|2 (b) in coherent state as functions of canonical
variable and time. We used α = |α|e−i(	t+φ) with |α| = 0.7 and φ = 0, h = 1, ε = 1, σ = 0.14, and
ω = 1.
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+
( σ

2ε
− i	

)
â†(0)e−i(kx−	t)

]
, (60)

B̂(x , t) = i

√
h

2εV
exp

(
− σ

2ε
t
) k√

	

[
â(0)ei(kx−	t) − â†(0)e−i(kx−	t)

]
. (61)

From Eqs. (60) and (61), we can confirm that the fields decay exponentially, and
eventually disappear on account of conductive property of media. The dissipated
field energy become the source of the heat produced in raising the temperature in
the media (Griffiths, 1989; Reitz et al., 1993).

Let us separate ladder operators into real and imaginary part as

â = â1 + i â2, â† = â1 − i â2. (62)

The real number â1 and â2 are called orthogonal phase amplitudes while â and â†

are complex amplitudes. Then Eqs. (60) and (61) can be reexpressed as

Ê(x , t) =
√

2h

εV 	
exp

(
− σ

2ε
t
) {[ σ

2ε
â1(0) − 	â2(0)

]
cos (kx − 	t)

−
[ σ

2ε
â2(0) + 	â1(0)

]
sin (kx − 	t)

}
, (63)

B̂(x , t) = −k

√
2h

εV 	
exp

(
− σ

2ε
t
)

[â1(0) sin (kx − 	t) + â2(0) cos(kx − 	t)].

(64)

Consideration of Eq. (14) and Eq. (62) enables us to write [â1, â2] = i/2. Then,
we can derive the following uncertainty relation in number state

(�â1)n(�â2)n = 1

2

(
n + 1

2

)
, (65)

where (�âi )n =
√

〈n|â2
i |n〉 − 〈n|âi |n〉2 for i = 1, 2. On the other hand, when we

investigate this relation in coherent state, we obtain that

(�â1)α(�â2)α = 1

4
, (66)

where (�âi )α =
√

〈â2
i 〉α − 〈âi 〉2

α for i = 1, 2. By comparing Eq. (66) with Eq. (65),
we can confirm that the uncertainty relation between the two orthogonal phase
amplitudes in coherent state is same as the minimum uncertainty relation in number
state.

We can represent complex number α as

α(t) = |α(t)|eiθ (t), (67)
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where |α(t)| and θ (t) are real number which stand for amplitude and phase respec-
tively, which can be obtained from Eq. (46) as

|α(t)| = 1√
2h

exp
( σ

2ε
t
)

〈q̂〉α
{

ε	 + 1

ε	

[
σ

2
+ exp

(
−σ

ε
t
) 〈 p̂〉α

〈q̂〉α

]2
}1/2

,

(68)

θ (t) = tan−1

{
1

ε	

[
σ

2
+ exp

(
−σ

ε
t
) 〈 p̂〉α

〈q̂〉α

]}
. (69)

Since 〈q̂〉α and 〈 p̂〉α are similar to the classical coordinate and momentum in me-
chanical system, respectively, they can be derived from Eq. (6) using Hamiltonian
dynamics:

〈q̂〉α = q0 exp
(
− σ

2ε
t
)

cos (	t + φ), (70)

〈 p̂〉α = −q0ε exp
( σ

2ε
t
) [( σ

2ε

)
cos (	t + φ) + 	 sin(	t + φ)

]
, (71)

where q0 and φ are real amplitude and phase at t = 0. Then, we can easily see that
Eqs. (68) and (69) are simplified to

|α(t)| = |α(0)| =
√

ε	

2h
q0, (72)

θ (t) = −(	t + φ). (73)

If we calculate the mean values of the electric field and its square in coherent state,
we have, by Eqs. (27), (60), and (67) with Eqs. (72) and (73),

〈Ê(x , t)〉α =
√

h

2εV 	
exp

(
− σ

2ε
t
)

|α(0)|
[σ

ε
cos(kx − 	t − φ) − 2	

× sin (kx − 	t − φ)
]
, (74)

〈Ê2(x , t)〉α = h

2εV 	
exp

(
− σ

ε
t

){
|α(0)|2

[
σ

ε
cos(kx − 	t − φ) − 2	

× sin (kx − 	t − φ)

]2

+
(

σ

2ε

)2

+ 	2

}
, (75)

It is also seen that the mean values of the magnetic field and its square in coherent
state is, by Eqs. (27), (61) and (67),

〈B̂(x , t)〉α = −k

√
2h

εV 	
|α(0)| exp

(
− σ

2ε
t
)

sin (kx − 	t − φ), (76)

〈B̂2(x , t)〉α = hk2

2εV 	
exp

(
−σ

ε
t
)

[4|α(0)|2 sin2(kx − 	t − φ) + 1]. (77)
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From Eqs. (74)–(77), we easily see that the dispersion of Ê and B̂ field are

[�Ê(x , t)]α =
√

〈Ê2(x , t)〉α − 〈Ê(x , t)〉2
α

=
√

h

2εV 	

[( σ

2ε

)2
+ 	2

]
exp

(
− σ

2ε
t
)

, (78)

[�B̂(x , t)]α =
√

〈B̂2(x , t)〉α − 〈B̂(x , t)〉2
α

=
√

h

2εV 	
k exp

(
− σ

2ε
t
)

. (79)

Thus, the dispersion for fields also decreases exponentially with time as well as the
field strength. The relative noise of the electric field strengths (RNE) and magnetic
field strengths (RNB) in the coherent state are given by, respectively

RNE ≡
(

[�Ê(x , t)]2
α

〈Ê(x , t)〉2
α

)1/2

=
√

[σ/(2ε)]2 + 	2

|α(0)||(σ/ε) cos(kx − 	t − φ) − 2	 sin (kx − 	t − φ)| , (80)

RNB ≡
(

[�B̂(x , t)]2
α

〈B̂(x , t)〉2
α

)1/2

= 1

2|α(0)|| sin (kx − 	t − φ)| . (81)

Figure 2 represents the graph of the relative noise, Eqs. (80) and (81), respectively.
From these figures we can see that the envelope of the relative noise alternately
become large and small with position as well as with time. Although the field
strengths are decrease, the relative noise do not disappear as time goes by. The
strength of relative noise depend on the absolute value of α, i.e., for large α it
becomes small. The dispersion for the number operator can be evaluated from the
relations that 〈n〉α = |α|2 and 〈n2〉α = |α|2 + |α|4 as

(�n)α = |α|. (82)

Thus, we can see that the absolute value of α, Eq. (68), is same as the dispersion
of photon number. The value |α|2 represents the mean value of photon number.

5. SQUEEZED STATE OF DISSIPATIVE LIGHT

We now investigate the properties of the dissipative light in squeezed states.
To do this, we introduce the squeeze operator that defined by (Vourdas and
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Fig. 2. Relative noise of the electric field (a), and magnetic field (b) strengths given in
Eqs. (80) and (81) as functions of position and time. We used k = 1, h = 1, ε = 1, σ = 0.2
and ω = 1, |α(0)| = 1, and φ = 0.5.
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Weiner, 1987)

Ŝ(ξ , λ) = exp

{
−1

2
[ξ (â†)2 − ξ ∗â2]

}
exp (iλâ†â), (83)

where

ξ = |ξ |eiϕ. (84)

Let us denote the transformed operator of â and â† by Ŝ(ξ , λ) as b̂ and b̂†:

b̂ = Ŝ(ξ , λ) â Ŝ†(ξ , λ), (85)

b̂† = Ŝ(ξ , λ) â† Ŝ†(ξ , λ). (86)

Then, we found that

b̂ = µâ + νâ†, (87)

b̂† = ν∗â + µ∗â†, (88)

where

µ = e−iλ cosh |ξ |, ν = e−i(λ−ϕ) sinh |ξ |. (89)

We can easily see that µ and ν satisfies

|µ|2 − |ν|2 = 1, (90)

so that [b̂, b̂†] = 1. Since the squeezed state |β〉 is the eigenstate of b̂, we write
eigenvalue equation for b̂ as

b̂|β〉 = β|β〉. (91)

We can find the transformation function 〈q ′|β〉 by acting conjugate state 〈q ′| which
corresponds to the eigenvalue q ′ of q̂ to both side of the above equation after
inserting Eq. (87) for b̂ to be

〈q ′|β〉 = Nq exp

{
− 1

2h
exp

(σ

ε
t
) [(

µ + ν

µ − ν
ε	 + i

σ

2

)
q ′2

− 2
√

2hε	
µα + να∗

µ − ν
exp

(
− σ

2ε
t
)

q ′
]}

, (92)

where normalization factor Nq is

Nq =
(

ε	

hπ (µ − ν)(µ∗ − ν∗)

)1/4

exp

[
−1

4

(
(α + α∗)2

(µ − ν)(µ∗ − ν∗)
− σ

ε
t

)
+ iδsq

]
,

(93)
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with arbitrary phase δsq . By using similar way, we also derive the transformation
function 〈p′|β〉 as

〈p′|β〉 = Np exp

{
− 1

2h
exp

(
−σ

ε
t
) [

ε	(µ + ν) + i
σ

2
(µ − ν)

]−1

×
[

(µ − ν)p′2 + 2i(µα + να∗)
√

2hε	 exp
( σ

2ε
t
)

p′
]}

, (94)

where

Np =
(

1

hπε	�2

)1/4

exp

{
1

4

(
[α − α∗ − iσ (α + α∗)/(2ε	)]2

|�|2 − σ

ε
t

)
+ iδsp

}
,

(95)

with arbitrary phase δsp and

� = µ + ν + iσ

2ε	
(µ − ν). (96)

For µ = 1 and ν = 0, the system becomes coherent state and we can show that
Eqs. (92) and (94) recovers to Eqs. (49) and (51), respectively, by take advantage
of Eq. (46). Figure 3 is the probability densities for the state of highly squeezed
in q. We see that the width of the probability density at certain time in q-space is
very narrow while that in p-space is much broad so that the uncertainty in q-space
is fairly reduced. On the other hand, for the state of highly squeezed in p-space,
that depicted in Fig. 4, the uncertainty in p-space is shrunk.

A squeezed state can also be obtained by first acting the squeeze operator
Ŝ(ξ , λ) on the vacuum state followed by the displacement operator D̂(α), i.e.,

|β〉 = D̂(α)Ŝ(ξ , λ)|0〉. (97)

The operator expectation values of the squeezed state can be evaluated by making
use of the above equation as (Vogel and Welsch, 1994)

〈β|â|β〉 = α, (98)

〈β|â†|β〉 = α∗, (99)

〈β|â2|β〉 = α2 − µν, (100)

〈β|(â†)2|β〉 = (α∗)2 − µ∗ν∗, (101)

〈β|â†â|β〉 = |α|2 + |ν|2. (102)

From now on, we abbreviate the notation 〈β| · · · |β〉which represent the expectation
value in squeezed state to 〈· · ·〉β for convenience. The variances of q̂ and p̂ can
be determined by applying these expectation values into Eqs. (37) and (38) (Vogel
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Fig. 3. Probability densities |〈q ′|β〉|2 (a) and |〈p′|β〉|2 (b) in squeezed state as functions of canonical
variable and time. We used α = |α|e−i(	t+φ) with |α| = 0.7 and φ = 0, h = 1, ε = 1, σ = 0.14,
ω = 1, λ = 0, |ξ | = 2, and ϕ = 0.
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Fig. 4. Same as in Fig. 3, but ϕ = π .
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and Welsch, 1994):

(�q̂)2
β = h

2ε	
exp

(
−σ

ε
t
) {

1 + 2|ν|2
[

1 −
√

1 + 1

|ν|2 cos(ϕ − 2λ)

]}
,

(103)

(� p̂)2
β = 1

2

(
ε	h + hσ 2

4	ε

)
exp

(σ

ε
t
)

×
{

1 + 2|ν|2
[

1 −
√

1 + 1

|ν|2 cos
(
ϕ − 2λ + 2φp

)]}
, (104)

where

φp = tan−1 2	ε

σ
+ π. (105)

We depicted the corresponding uncertainty relation in Fig. 5 as a function of
conductivity σ . For a certain value of σ the uncertainty relation becomes h/2
which is quantum-mechanically acceptable minimum quantity.

On the other hand, the variances of Eqs. (9) and (10) and their commutation
relation are

(�X̂1)2
β = 1

2

{
1 + 2|ν|2

[
1 −

√
1 + 1

|ν|2 cos (ϕ − 2λ)

]}
, (106)

(�X̂2)2
β = 1

2

{
1 + 2|ν|2

[
1 +

√
1 + 1

|ν|2 cos (ϕ − 2λ)

]}
, (107)

(�X̂1)2
β(�X̂2)2

β = 1

4
[1 + 4|µ|2|ν|2 sin2(ϕ − 2λ)]. (108)

Figure 6 represent the uncertainty relations between q̂ and p̂ (a) and between X̂1

and X̂2 (b) as functions of magnitude |ξ | and phase ϕ in Eq. (84). They fluctuate
more or less depending on ϕ.

Performing the similar procedures as the previous case in coherent state and
taking advantage of Eqs. (98)–(102), we derive the mean values of the electric and
magnetic fields and their squares in squeezed state to be

〈Ê(x , t)〉β = 〈Ê(x , t)〉α , (109)

〈Ê2(x , t)〉β = 〈Ê2(x , t)〉α − h

2εV 	
exp

(
−σ

ε
t
)

×
{
µν

( σ

2ε
+ i	

)2
e2ikx + µ∗ν∗

( σ

2ε
− i	

)2
e−2ikx
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Fig. 5. Uncertainty relation (�q̂)β (� p̂)β in squeezed state for various values
of ϕ(a) and |ξ |(b) as a function of conductivity. The value of ϕ for (a) is 0(thick
dashed line), π/4(long dotted line), and π/2(short dotted line). The value of |ξ |
for (b) is 0.5(thick dashed line), 1.0(long dotted line), and 1.5(short dotted line).
We used ε = 1, h = 1, λ = 1, ω = 1, t = 0, |ξ | = 1 for (a), and ϕ = 0 for (b).

− 2|ν|2
[( σ

2ε

)2
+ 	2

]}
, (110)

〈B̂(x , t)〉β = 〈B̂(x , t)〉α , (111)

〈B̂2(x , t)〉β = 〈B̂2(x , t)〉α + hk2

2εV 	
exp

(
−σ

ε
t
)

× [µνe2ikx + µ∗ν∗e−2ikx + 2|ν|2]. (112)
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Fig. 6. Uncertainty relation (�q̂)β (� p̂)β (a) and (�X̂1)β (�X̂2)β (b) in squeezed state
as functions of ϕ and |ξ |. We used ε = 1, h = 1, λ = 1, ω = 1, t = 0, σ = 1.

Then, we easily identify the dispersion of Ê and B̂ field as

[�Ê(x , t)]β =
√

〈Ê2(x , t)〉β − 〈Ê(x , t)〉2
β

=
√

h

2εV 	

[
(1 + 2|ν|2)

(
σ 2

4ε2
+ 	2

)
− µν

( σ

2ε
+ i	

)2
e2ikx

− µ∗ν∗
( σ

2ε
− i	

)2
e−2ikx

]1/2

exp
(
− σ

2ε
t
)

, (113)
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[�B̂(x , t)]β =
√

〈B̂2(x , t)〉β − 〈B̂(x , t)〉2
β

=
√

h

2εV 	
k exp

(
− σ

2ε
t
)

[1 + 2|ν|2 + µνe2ikx + µ∗ν∗e−2ikx ]1/2.

(114)

6. SUMMARY

With the choice of Coulomb gauge, we investigated coherent state and
squeezed state for the light propagating through homogeneous conducting lin-
ear media along the view of the quantization scheme with LR invariant op-
erator method. We evaluated the coherent state by operating 〈q ′| and 〈p′| to
both side of Eq. (27). The resulting coherent state represented as Eqs. (49) and
(51). If we put phases δcq and δcp as Eqs. (50) and (52), respectively, these
calculations agree with the ones evaluated by expanding the number state
eigenfunction |n〉.

For the case that the media has no charge density, the scalar potential is
zero so that the electric and magnetic fields can be represented in terms of only
vector potential. By expanding the vector potential, we evaluated quantized elec-
tric and magnetic fields. These fields are decayed exponentially, and slowly or
rapidly depending on the value of σ/ε, with time. Note that the fields suffer
continuous dissipation that agrees with the result of Choi (2003a), due to the
conductivity of the media. The dissipated field energy become the source of the
heat produced to raise the temperature in the media. The probability densities,
Eqs. (53) and (54), oscillate back and forth with time about q ′ = 0 and p′ = 0,
respectively. This behavior is very similar to the motion of classical oscillator.
The amplitude of oscillation decreases with time in q-space while increases in
p-space.

We confirmed that the uncertainty product between the two orthogonal phase
amplitudes, â1 and â2, in coherent state is same as the uncertainty product in
vacuum number state. Not only the field strength but also the dispersion of the
fields are decayed exponentially with time. From Figs. 1 and 2, we can see that the
envelope of the relative noise alternately become large and small with position as
well as with time.

We also investigated squeezed states for the dissipative light by introducing
a squeeze operator. The squeezed state is an eigenstate of operator b̂ defined
in Eq. (87). The q- and p-space representations of squeezed state are given by
Eqs. (92) and (94). For the light that strongly squeezed in q, the width of the
probability density at certain time in q-space is very narrow while that in p-space
is much broad. As a matter of course, the phenomenon is vice versa for the light
that strongly squeezed in p. The uncertainty relation between canonical variables
q̂ and p̂ are varied depending on the value of conductivity σ in squeezed state,
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but not lowered below h/2 which is quantum-mechanically acceptable minimum
uncertainty. We also derived mean values and dispersions of the dissipative electric
and magnetic fields in squeezed state.
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